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Adaptive Nonlinear Tracking Control of Kinematically
Redundant Robot Manipulators with Sub-Task Extensions1

E. Tatlicioglu, M. McIntyre, D. Dawson, and I. Walker
Department of Electrical & Computer Engineering, Clemson University, Clemson, SC 29634-0915

E-mail: mmcinty@ces.clemson.edu

Abstract: Past research efforts have focused on
the end-effector tracking control of redundant robots
because of their increased dexterity over their non-
redundant counterparts. This work utilizes an adap-
tive full-state feedback quaternion based controller de-
veloped in [5] and focuses on the design of a general
sub-task controller. This sub-task controller does not
affect the position and orientation tracking control ob-
jectives, but instead projects a preference on the config-
uration of the manipulator based on sub-task objectives
such as the following: singularity avoidance, joint limit
avoidance, bounding the impact forces, and bounding
the potential energy.

1 Introduction

In many robotic applications, the desired task is natu-
rally defined in terms of end-effector motion. As a re-
sult, the desired robot trajectory is described by the de-
sired position and orientation of a Cartesian coordinate
frame attached to the robot manipulator’s end-effector
with respect to the base frame, also referred to as the
task-space. Control of robot motion is then performed
using feedback of either the joint variables (relative po-
sition of each robot joint pair) or the task-space vari-
ables. Unfortunately, joint-based control has the unde-
sirable feature of requiring the solution of the inverse
kinematics to convert the desired task-space trajectory
into the desired joint space trajectory. In contrast,
task-space control does not require the inverse kine-
matics; however, the precise tracking control of the end-
effector orientation complicates the problem. For ex-
ample, several parameterizations exist to describe the
orientation angles, including minimum three-parameter
representations (e.g., Euler angles, Rodrigues parame-
ters, etc.) and the non-minimum four-parameter rep-
resentation given by the unit quaternion. Whereas the
three-parameter representations always exhibit singu-
lar orientations (i.e., the orientation Jacobian matrix
in the kinematic equation is singular for some orien-
tations), the unit quaternion-based approach can be
used to represent the end-effector orientation without
singularities. Thus, despite significantly complicating

1This research was supported in part by two DOC Grants,
an ARO Automotive Center Grant, a DOE Contract, a Honda
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the control design, the unit quaternion seems to be the
preferred method of formulating the end-effector orien-
tation tracking control problem. Some past work that
deals with task-space control formulation can be found
in [2], [9], and [22]. Specifically, an experimental as-
sessment of different end-effector orientation parame-
terization for task-space robot control was provided in
[2]. One of the first results in task-space control of ro-
bot manipulators was presented in [9]. Resolved-rate
and resolved-acceleration task-space controllers using
the quaternion parameterization were proposed in [22].

In addition, the control problem is further complicated
in the presence of kinematic redundancy. That is, to
provide the end user with increased flexibility for ex-
ecuting sophisticated tasks, the next generation of ro-
bot manipulators will have more degrees of freedom
than are required to perform an operation in the task-
space. Since the number of joints in a redundant ro-
bot is greater than the dimension of the task-space,
one can show that joint motion in the null-space of the
Jacobian matrix exists that does not affect task-space
motion (this phenomenon is commonly referred to as
self-motion). As noted in [14], [15], and [19], there
are generally an infinite number of solutions for the
inverse kinematics of redundant robots. As a result,
given a desired task-space trajectory, it is difficult to
select a reasonable desired joint trajectory that satis-
fies the control requirements (e.g., closed-loop stability
and boundedness of all signals) and the sub-tasks (e.g.,
singularity avoidance, joint limit avoidance, bounding
the impact forces and bounding the potential energy).
Thus, there is strong motivation for control of redun-
dant robots to be done in the task-space. For work
related to controllers for redundant robots, the reader
is referred to [3], [6], [9], [16], [18], [21], [23] and the
references therein.

This paper utilizes the adaptive full-state feedback
quaternion based controller developed in [5] and fo-
cuses on the design of a general sub-task controller.
The novelty of this work is the systematic integration
of the sub-task controller while simultaneously achiev-
ing end-effector tracking. Other efforts have been pro-
posed in [5], [6] and [23], but in these approaches, the
sub-task objective is an add-on to the tracking objec-



tive without integration into the stability analysis. In
[5], a sub-task control signal was introduced and can
be seen in equation (2.211) as h(t). In the stability
analysis of [5], this sub-task signal is inconsequential
to the tracking control objective as long as h(t) and
ḣ(t) remain bounded. This work will exploit the prop-
erty of self-motion for redundant robot manipulators
by designing a general sub-task controller that meets
the above conditions while controlling the joint motion
in the null-space of the Jacobian matrix to alleviate po-
tential problems in the physical system or select config-
urations that are better suited for a particular applica-
tion. Specific sub-task controllers will be designed for
singularity avoidance, joint limit avoidance, bounding
the impact forces and bounding the potential energy.
In Section 2 the dynamic and kinematic models are
described for a general redundant robot manipulator.
In Section 3 the tracking objective is presented. The
tracking closed-loop error system is presented in Sec-
tion 4. In Sections 5 and 6, both the general sub-task
controller as well as four specific sub-task controllers
are presented. A numerical simulation was completed
for each specific sub-task and the results are presented
in Section 7. Concluding remarks are made in Section
8.

2 Robot Dynamic and Kinematic Model

The dynamic model for an n-joint (n ≥ 6), revolute,
direct drive robot manipulator is described by the fol-
lowing expression

M(θ)θ̈ + Vm(θ, θ̇)θ̇ +G(θ) + Fdθ̇ = τ (1)

where θ(t), θ̇(t), θ̈(t) ∈ Rn denote the joint position, ve-
locity, and acceleration in the joint-space, respectively.
In (1), M(θ) ∈ Rn×n represents the inertia effects,
Vm(θ, θ̇) ∈ Rn×n represents centripetal-Coriolis effects,
G(θ) ∈ Rn represents the gravity effects, Fd ∈ Rn×n
represents the constant positive definite diagonal dy-
namic frictional effects, τ(t) ∈ Rn represents the con-
trol input torque vector. The subsequent development
is based on the following properties [12].

Property 1: The inertia matrix M(θ) is symmetric
and positive-definite, and satisfies the following in-
equalities

m1 kξk2 ≤ ξTM(θ)ξ ≤ m2 kξk2 ∀ξ ∈ Rn (2)

where m1, m2 ∈ R are positive constants, and k·k
denotes the standard Euclidean norm.

Property 2: The inertia and centripetal-Coriolis ma-
trices satisfy the following skew symmetric rela-
tionship

ξT
µ
1

2

·
M (θ, θ̇)− Vm(θ, θ̇)

¶
ξ = 0 ∀ξ ∈ Rn

(3)

where Ṁ(θ, θ̇) denotes the time derivative of the
inertia matrix.

Property 3: The left-hand side of (1) can be linearly
parameterized as shown below

M(θ)θ̈ + Vm(θ, θ̇)θ̇ +G(θ) + Fdθ̇ = Yg

³
θ, θ̇, θ̈

´
φ

(4)
where φ ∈ Rp contains the constant system pa-
rameters, and the regression matrix Yg (·) ∈ Rn×p
contains known functions dependent on the signals
θ(t), θ̇(t), and θ̈(t).

Let E and B be orthogonal coordinate frames attached
to the end-effector of a redundant robot manipulator
and its inertial frame, respectively. The position and
orientation of E relative to B are commonly represented
by a homogeneous transformation matrix, T (θ) ∈ R4×4
which is defined as [12]

T (θ) ,
∙
R(θ) p(θ)
01×3 1

¸
(5)

where 01×3 ,
£
0 0 0

¤
, the vector p(θ) ∈ R3 and

the rotation matrix R(θ) ∈ R3×3 represent the position
and orientation of the end-effector coordinate frame,
respectively. From this homogeneous transformation
matrix, the constrained four-parameter unit quaternion
representation can be used to develop the kinematic
model. From (5), a relationship between the position
and orientation of E relative to B can be developed as
follows [13] ∙

p
q

¸
,
∙
fp (θ)
fq (θ)

¸
(6)

where fp (θ) ∈ R3 and fq (θ) ∈ R4 are kinematic func-
tions, q(t) ,

£
qo(t) qTv (t)

¤T ∈ R4 with qo(t) ∈ R
and qv(t) ∈ R3. The variable q(t), as given in (6),
denotes the unit quaternion [7]. The unit quater-
nion represents a global nonsingular parameterization
of the end-effector orientation, and is subject to the
constraint qT q = 1. Note that, while fp(θ) is directly
obtained from (5), several algorithms exist to deter-
mine fq(θ) from R(θ) ([7] and [10]). Conversely, R(q)
can be determined given the unit quaternion parame-
terization [7]

R(q) ,
¡
q2o − qTv qv

¢
I3 + 2qvq

T
v + 2qoq

×
v (7)

where I3 ∈ R3×3 is the standard identity matrix, and
the notation a× ∈ R3×3 ∀a = [a1 a2 a3]T , denotes the
following skew-symmetric matrix

a× ,

⎡⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎦ . (8)

Velocity relationships can be formulated by differenti-
ating (6) which can be written as∙

ṗ
q̇

¸
=

∙
Jp (θ)
Jq (θ)

¸
θ̇ (9)



where θ̇ (t) ∈ Rn denotes the velocity of E in a general-
ized coordinate system, and Jp (θ) ∈ R3×n, Jq (θ) ∈
R4×n denotes the position and orientation Jacobian
matrices, respectively. To facilitate the subsequent con-
trol development and stability analysis, the fact that
q(t) is related to the angular velocity of E relative to
B, denoted by ω(t) ∈ R3 with coordinates expressed in
B, via the following differential equation ([1] and [13])

q̇ , B(q)ω (10)

where the Jacobian-type matrix B(q) ∈ R4×3 is defined
as follows

B(q) , 1

2

∙
−qTv
qoI3 − q×v

¸
(11)

where B(q) satisfies the following useful property

BT (q)B(q) = I3. (12)

The final kinematic expression that relates the gener-
alized Cartesian velocity to the generalized coordinate
system is developed as follows∙

ṗ
ω

¸
= J (θ) θ̇ (13)

where (9), (10) and (12) were utilized, and J (θ) ∈
R6×n is defined as follows

J (θ) ,
∙
Jp (θ)
BT (q)Jq (θ)

¸
. (14)

To facilitate the control development, the pseudo-
inverse of J(θ) is denoted by J+(θ) ∈ Rn×6, which
is defined as follows

J+ , JT
¡
JJT

¢−1
(15)

where J+(θ) satisfies the following equality

JJ+ = I6 (16)

where I6 ∈ R6×6 is the standard identity matrix. As
shown in [14], the pseudo-inverse defined by (15) satis-
fies the Moore-Penrose Conditions given below

JJ+J = J J+J J+ = J+

(J+J)
T
= J+J (JJ+)

T
= JJ+.

(17)

In addition to the above properties, the matrix
(In − J+J) satisfies the following useful properties

(In − J+J) (In − J+J) = In − J+J
(In − J+J)T = (In − J+J)
J (In − J+J) = 0
(In − J+J)J+ = 0

(18)

where In ∈ Rn×n is the standard identity matrix.

Remark 1 During the control development, the as-
sumption that the minimum singular value of the ma-
nipulator Jacobian, denoted by σm is greater than
a known small positive constant δ > 0, such that
max {kJ+(θ)k} is known a priori and all kinematic sin-
gularities are always avoided.

Remark 2 The dynamic and kinematic terms for a
general revolute robot manipulator, denoted by M(θ),
Vm(θ, θ̇), G(θ), J(θ), and J+(θ), are assumed to de-
pend on θ(t) only as arguments of trigonometric func-
tions, and hence, remain bounded for all possible θ(t).
During the control development, the assumption will be
made that if p(t) ∈ L∞ then θ(t) ∈ L∞ (Note that q(t)
is always bounded since q(t)T q(t) = 1).

3 Task-Space Tracking

The objective for the redundant robotic system is to de-
sign a control input that ensures the position and orien-
tation of E tracks the position and orientation of a de-
sired orthogonal coordinate frame Ed where pd(t) ∈ R3
denotes the position of the origin of Ed, relative to the
origin of B and the rotation matrix from Ed to B is de-
noted by Rd (·) ∈ R3×3. The standard assumption that
pd(t), ṗd(t), p̈d(t), Rd (·) , Ṙd (·) , and R̈d (·) ∈ L∞ will
be utilized in the subsequent stability analysis. The
position tracking error ep(t) ∈ R3 can be defined as
follows

ep , pd − p (19)

where p(t) was defined in (5). If the orientation of Ed
relative to B is described by the desired unit quater-
nion, qd(t) ,

£
qod(t) qTvd(t)

¤T ∈ R4, then similar
to (7), the desired rotation matrix can be described as
follows

Rd(qd) =
¡
q2od − qTvdqvd

¢
I3 + 2qvdq

T
vd + 2qodq

×
vd. (20)

As in (10), qd(t) is related to the desired angular veloc-
ity of Ed relative to B, denoted by ωd(t) ∈ R3, through
the kinematic equation

q̇d , B (qd)ωd. (21)

To quantify the difference between the actual and de-
sired end-effector orientations, a rotation matrix R̃(·) ∈
R3×3 of E with respect to Ed is defined as follows

R̃ , RTdR =
¡
e2o − eTv ev

¢
I3 + 2eve

T
v + 2eoe

×
v (22)

where the unit quaternion tracking error, eq(t) ,£
eo(t) eTv (t)

¤T ∈ R4 can be derived as follows (see
[22] and Theorem 5.3 of [11])

eq ,
∙
eo
ev

¸
=

∙
qoqod + q

T
v qvd

qodqv − qoqvd + q×v qvd

¸
(23)



where eq(t) satisfies the constraint

eTq eq = e
2
0 + e

T
v ev = 1, (24)

which indicates that

0 ≤ kev(t)k ≤ 1 0 ≤ |e0(t)| ≤ 1 (25)

for all time.

Based on the above definitions, the end-effector posi-
tion and orientation tracking objectives can be stated
as follows

kep(t)k→ 0 and R̃(eq)→ I3 as t→∞, (26)

respectively. The orientation tracking objective given
in (26) can also be stated in terms of the unit quater-
nion error of (23). Specifically, it is easy to see from
(24) that

if kev(t)k→ 0 as t→∞, then |e0(t)|→ 1 as t→∞;
(27)

hence, it can be stated from (22) and (27) that

if kev(t)k→ 0 as t→∞, then R̃(eq)→ I3 as t→∞.
(28)

4 Task-Space Controller

Based on the open-loop kinematic tracking error sys-
tem given in [5] and the subsequent stability analysis,
the control input is designed as follows

τ , Y φ̂+Krr + (ΛJ)
T

∙
ep
ev

¸
(29)

where Kr ∈ Rn×n is a positive-definite, diagonal, con-
trol gain matrix, and φ̂(t) ∈ Rp denotes the parameter
estimate vector which is updated according to

.

φ̂, ΓY T r (30)

with Γ ∈ Rp×p being a positive-definite, diagonal,
adaptation gain matrix. The auxiliary signal r(t) ∈ Rn
can be defined as follows

r , ud − θ̇ (31)

where ud(t) ∈ Rn is an auxiliary control input defined
as follows

ud , J+Λ−1
∙
ṗd +K1ep
−RTd ωd +K2ev

¸
+
¡
In − J+J

¢
h

(32)
where K1, K2 ∈ R3×3 are positive-definite, diagonal,
control gain matrices, the matrix Λ(t) ∈ R6×6 is defined
as follows

Λ ,
∙
−I3 03×3
03×3 RTd

¸
(33)

where 03×3 ∈ R3×3 denotes a matrix of zeros,
and h(θ) ∈ Rn is the subsequently designed sub-
task controller signal. The linear parameterization
Y (pd, ṗd, p̈d, eq, θ, θ̇, h, ḣ)φ introduced in (29) is defined
as follows

Y φ ,Mu̇d + Vmud +G(θ) + Fdθ̇ (34)

where Y (·) ∈ Rn×p denotes the measurable regression
matrix, and φ ∈ Rp represents the constant parame-
ter vector (e.g., mass, inertia, and friction coefficients).
To obtain the closed-loop dynamics for r(t), the time
derivative of (31) is taken, pre-multiply the resulting
equation byM(θ), and substitute (1) to obtain the fol-
lowing

Mṙ = −Vmr + Y φ̃−Krr − (ΛJ)T
∙
ep
ev

¸
(35)

where the parameter estimation error signal φ̃(t) ∈ Rp
is defined as follows

φ̃ , φ− φ̂. (36)

Remark 3 A benchmark adaptive controller was uti-
lized to compensate for the parametric uncertainties
present in the dynamic model (e.g., mass, inertia, and
friction coefficients). Alternatively, a robust or slid-
ing mode controller could also be used to compensate
for modeling uncertainties not restricted to parametric
uncertainties (e.g. see [4]).

The following theorem can be stated regarding the sta-
bility of the closed loop system.

Theorem 1 The control law described by (29) guaran-
tees global asymptotic end-effector position and orien-
tation tracking in the sense that

kep(t)k→ 0 as t→∞ (37)

and
R̃(eq(t))→ I3 as t→∞, (38)

as well as that all signals are bounded provided h(θ) ∈
L∞ and ∂h(θ)

∂θ ∈ L∞. (Note the assumption given in
Remark 2 has been utilized.)

Proof: See [5] for proof.

5 Sub-Task Control Objective

In addition to the tracking control objective, there can
be sub-task objectives that are required for a particular
redundant robot application. To this end, the auxiliary
control signal h(θ), as introduced in (32), allows for
sub-task objectives to be integrated into the controller.
This sub-task integration is completed by designing a



framework that places preferences on desirable configu-
rations where an infinite number of choices are available
when dealing with the self-motion of the redundant ro-
bot. These sub-tasks are integrated through the joint
motion in the null-space of the standard Jacobian ma-
trix by designing h(θ). Theorem 1 requires that h(θ),
∂h(θ)
∂θ ∈ L∞,provided θ(t) ∈ L∞. Based on Remark 2,
and the proof of Theorem 1 it is clear that θ(t) ∈ L∞.
In the subsequent section, h(θ) will be designed to meet
these conditions. In the event that a subsequently de-
fined Jacobian-related matrix loses rank, the sub-task
objective is not guaranteed. More specifically, if the
Jacobian-related matrix maintains full rank, then the
sub-task objective is met as proven in the subsequent
stability analysis.

6 Sub-Task Closed-Loop Error System

In this section, a general sub-task closed-loop error
system is developed. To this end, an auxiliary signal
ya(t) ∈ R+ is defined as follows

ya , exp (−αβ(θ)) (39)

where α ∈ R+ is a constant, β(θ) ∈ R+ is selected for
each sub-task, and exp (·) is the standard logarithmic
exponential function. To determine the dynamics of
ya(t), the time derivative of (39) is taken and can be
written as follows

ẏa = Jsθ̇ (40)

where a Jacobian-type vector Js(t) ∈ R1×n is defined
as follows

Js =
∂ya
∂θ
. (41)

From (40), a substitution can be made for θ̇(t) and the
following expression for ẏa(t) can be written as follows

ẏa = JsJ
+Λ−1

∙
ṗd +K1ep
−RTd ωd +K2ev

¸
(42)

+Js
¡
In − J+J

¢
h− Jsr

where (31) and (32) were both utilized. Based on the
dynamics of (42) and the subsequent stability analysis,
the sub-task control input can be designed as follows

h , −ks1
£
Js
¡
In − J+J

¢¤T
ya (43)

where ks1 ∈ R+ is a constant gain. After substituting
(43) into (42), the following expression can be obtained

ẏa = JsJ
+Λ−1

∙
ṗd +K1ep
−RTd ωd +K2ev

¸
(44)

−Jsr − ks1
°°Js ¡In − J+J¢°°2 ya.

Remark 4 The auxiliary signal ya(t) in (39) was se-
lected because of the useful properties of the logarith-
mic exponential function. From (39) it is clear that

0 < ya(t) ≤ 1, and that as β(θ) increases, ya(t) de-
creases. This definition of ya(t) is arbitrary and many
different positive functions could also be utilized.

The following theorem can now be stated regarding the
performance of the sub-task closed-loop error system.

Theorem 2 The control law described by (43) guaran-
tees that ya(t) is practically regulated (i.e., ultimately
bounded) in the following sense

|ya(t)| ≤
r
|y2a(t0)| exp (−2γt) +

ε

γ
(45)

provided the following sufficient conditions hold°°Js ¡In − J+J¢°°2 > δ̄ (46)

and
ks1 >

1

δ̄δ2
(47)

where ε, γ, δ̄, δ2 ∈ R+ are constants.

Proof: See Appendix A.

Remark 5 In the subsequent sub-sections, specific
β (θ) functions will be designed for different sub-task
objectives. Each β (θ) is designed specifically to only
depend on θ (t) . For most of the sub-task objectives,
the problem is set up to require that β (θ) > 0 which
is achieved by keeping ya(t) < 1. From (45), it is clear
that ya(t) < 1 if the following inequality holdsr

|y2a(t0)|+
ε

γ
< 1 (48)

which can be achieved through the selection of the ro-
bot manipulator’s initial condition, control gains ks1, α,
and bounding constants. For other sub-task objectives,
the problem is to maximize β (θ) as t → ∞ (minimize
ya(t) as t → ∞). From the result of Theorem 2 as
seen in (45), a true maximization of β (θ) (minimiza-
tion of ya(t)) is not achieved. However, an increasing
lower bound for β (θ) (an exponentially decreasing up-
per bound for ya(t)) is achieved from (45).

Remark 6 The four sub-task objectives as described
in the subsequent sub-sections are met only if the suffi-
cient conditions as described by (46) and (47) are met.
These sub-task objectives are secondary to the tracking
objective which is always guaranteed by Theorem 1. In
the event that the sub-task controller attempts to force
the robot manipulator’s end-effector to take a path not
allowed by the tracking controller, the condition in (46)
will not be met; hence, the result of Theorem 2 will not
hold. With this fact in mind, the formulation of the
desired task-space trajectory and the sub-task objectives
require careful consideration to meet both the tracking
and sub-task objectives simultaneously.



6.1 Sub-Task 1: Singularity Avoidance
The objective for this sub-task is to keep the robot
manipulator away from configurations that result in
singularities, and hence, decrease the manipulability
of the robot manipulator. For this sub-task, let β (θ)
be defined as the manipulability measure of a robot
manipulator given by the following definition [17]

β =
q
det [JJT ] (49)

where det [·] is the determinant of the 6 × 6 matrix
J (θ) JT (θ) and β (θ) = 0 when the robot is in a sin-
gular configuration. From (39), (45), (48), and (49), it
is clear that β (θ) > 0 ∀t, provided the sufficient condi-
tions are met, hence meeting this sub-task objective.

6.2 Sub-Task 2: Joint Limits
Joint limits are a mechanical constraint for almost all
robot manipulators. In (1), the joint angles repre-
sented by θi(t) ∈ R+ ∀i = 1..n operate in the range
of θi ∈

£
θmini θmaxi

¤
, where θmini , θmaxi ∈ R+ are

the minimum and maximum joint limits for each joint,
respectively. The objective for this sub-task is to keep
each joint angle away from its respective joint limits,
while executing the tracking control objective. For this
sub-task, the auxiliary signal β (θ) is defined as follows

β ,
nY
i=1

∙µ
1− θi

θmaxi

¶µ
θi
θmini

− 1
¶¸
. (50)

From (50), it is clear that β (θ) > 0 as long as all joints
are not at the joint limits. From (39), (45), (48), and
(50), it is clear that β (θ) > 0 ∀t, provided the suffi-
cient conditions are met, hence meeting this sub-task
objective.

6.3 Sub-Task 3: Impact Force Configurations
For collision applications of robotic manipulators, the
user often requires the ability to specify the impact
force the end-effector makes with the environment. For
hammering, or chiseling applications, the user may
want to maximize the impact force, while in a medical
application, the desire to have reduced collision force
may be necessary. To study these concepts, an impact
force measure is defined as, F (t) ∈ R, which can be
written as follows [20]

F , − (1 + κ)ϑT η

ηTJM−1JT η
(51)

where κ ∈ R denotes the type of collision (κ is either
zero or one), ϑ(t) ∈ R3 is the velocity vector for the
two colliding bodies, and η(t) ∈ R3 is a vector normal
to the plane of contact for the two colliding bodies,
M (θ) ∈ Rn×n is the inertia matrix as found in (1).
Utilizing (51), impact force sub-task objectives can be
defined to either upper or lower bound the impact force
with the environment.

6.3.1 Upper Bounding the Impact Force:
The objective for this sub-task is to keep the robot ma-
nipulator away from postures that are “best” suited for
impact with the environment for a given end-effector
velocity and point of contact, hence ϑ(t) and η(t) are
predetermined and fixed. To this end, β (θ) , is defined
as the denominator of (51), and can be written as fol-
lows [20]

β = ηTJM−1JT η. (52)

Large values of β (θ) indicate postures with small im-
pact forces at the end-effector [20]; therefore, the goal
of this sub-task is to force the manipulator into pos-
tures that results in larger values of β (θ). From (39),
(45), (48), and (52), it is clear that β (θ(t)) > 0 ∀t,
provided the sufficient conditions are met.

6.3.2 Withstanding Impacts: An alternate
impact sub-task is to push the robot manipulator into
postures that are “best” suited to withstand impacts
with the environment. For this case, let β (θ) be defined
as the dynamic impact measure given by the following
definition [20]

β ,
r
det

h
(J+)

T
M2J+

i
. (53)

Large values of β (θ) indicate postures with high impact
forces at the end-effector [20]; therefore, the goal of this
sub-task is to force the manipulator into postures that
results in larger values of β (θ) . From (39), (45), (48),
and (53), it is clear that β (θ(t)) > 0 ∀t, provided the
sufficient conditions are met.

Remark 7 For the adaptive control paradigm, the
constant parameters for the inertia matrix M (θ) are
not precisely known; therefore, estimates of these para-
meters must be utilized in (52) and (53) in lieu of the
actual values. The matrix inverse of the estimate of
M (θ) (i.e., M̂ (θ)) can be guaranteed through the use
of a projection as described in [8].

6.4 Sub-Task 4: Upper Bounding the Potential
Energy
The objective for this sub-task is to keep the robot
manipulator away from postures that result in an un-
necessarily high level of potential energy. With the
flexibility inherent to redundant robots, a posture with
less potential energy is more desirable, thus providing
an increase in system efficiency. The potential energy,
µ(t) ∈ R, stored in the manipulator can be defined as
follows [17]

µ , −
nX
i=1

£
mlig

T
o Pli +mmig

T
o Pmi

¤
(54)

where mli,mmi ∀i = 1..n are the joint and rotor
masses, respectively, go ,

£
0 0 −g

¤T
, is the grav-

itational acceleration vector in the base frame where g



is the gravitational constant, Pmi (θ) ∈ R3 is a vector
from the origin of the base frame B to the center posi-
tion of the rotor, and Pli (θ) ∈ R3 is a vector described
as follows [17]

Pli ,
1

mli

Z
Vli

P ∗i ρdV (55)

where ρ ∈ R is the density of the elementary particle of
volume dV, P ∗i (θ) ∈ R3 is a vector from the origin of
B to the center joint position. From (54) and (55), it is
clear that µ(t) is a function of θ(t) and by convention is
always positive. For this sub-task, the auxiliary signal
ya(t) ∈ R is defined as follows

ya , µ (θ) . (56)

The goal is to force the manipulator to take postures
with less potential energy. From (45), (48), and (56),
provided the sufficient conditions are met, it is clear
that by making the control gain ks1 large, γ is made
large (See Appendix A), and by examining (45), it is
clear that the potential energy will have an exponen-
tially decreasing upper bounded.

Remark 8 For the adaptive control paradigm, the
constant parameters for the rotor and joint masses are
not precisely known; therefore, estimates of these para-
meters must be utilized in (54) and (55) in lieu of the
actual values as discussed in Remark 7.

7 Simulation Results

To illustrate the performance of the tracking and sub-
task controller presented above, a simplified kinematic
simulation was completed for a planar 3-joint revo-
lute robot. This robot is redundant because there
are 3 joints in a 2 dimensional task-space. For the
simulation, a feedback linearization controller was uti-
lized, and hence the adaptation mechanism was not
required1. Specifically, the following dynamic model
was utilized

M (θ) θ̈ +N
³
θ, θ̇
´
= τ (57)

where θ̈(t), τ(t) ∈ R3, the inertia matrix M (θ) ∈ R3×3
is defined as follows

M(θ) =

⎡⎣ M11 M12 M13

M12 M22 M23

M13 M23 M33

⎤⎦
where

M11 = p1 + 2p4c2 + 2p5c23 + 2p6c3 M22 = p2 + 2p6c3
M12 = p2 + p4c2 + p5c23 + 2p6c3 M23 = p2 + p6c3
M13 = p2 + p5c23 + p6c3 M33 = p3

1A feedback linearization controller was utilized, as opposed
to an adaptive controller, to more clearly illustrate the perfor-
mance of the sub-task objective.

where p1 = 1.2746 [kg·m2], p2 = 0.3946 [kg·m2],
p3 = 0.0512 [kg·m2], p4 = 0.4752 [kg·m2], p5 =
0.128 [kg·m2], p6 = 0.1152 [kg·m2] and c2 , cos(θ2),

c3 , cos(θ3), and c23 , cos (θ2 + θ3) , N
³
θ, θ̇
´
∈ R3

represents the centripetal-Coriolis, gravitational and
frictional effects. For the potential energy simula-
tions given below, the gravitational effects G(θ) =£
G1(θ) G2(θ) G3(θ)

¤T
where G1(θ), G2(θ), G3(θ)

∈ R are defined as follows

G1(θ) =
1

2
ml1gl1c1 +ml2g(l1c1 +

1

2
l2c12)

+ml3g(l1c1 + l2c12 +
1

2
l3c123)

G2(θ) =
1

2
ml2gl2c12 +ml3g(l2c12 +

1

2
l3c123)

G3(θ) =
1

2
ml3gl3c123

where the center of mass is at the midpoint of each
joint, and was selected as follows: ml1 = 3.6 [kg],
ml2 = 2.6 [kg], and ml3 = 2 [kg], the joint lengths were
selected as follows: `1 = 0.40 [m], `2 = 0.36 [m], and
`3 = 0.32 [m], the gravitational constant was selected
as follows: g = 9.8 [ msec2 ], and c1 , cos(θ1), c12 ,
cos(θ1 + θ2), c123 , cos (θ1 + θ2 + θ3) , s1 , sin(θ1),
s12 , sin(θ1+θ2), and s123 , sin (θ1 + θ2 + θ3) . Feed-
back linearization can be used to linearize (57) as fol-
lows

M (θ)Uc +N
³
θ, θ̇
´
= τ (58)

where Uc(t) ∈ R3 is the inner loop control input. After
substituting (58) into (57), we have

θ̈ = Uc. (59)

The task-space is defined by x(t) ∈ R2, where x(t) ,£
x1(t) x2(t)

¤T
, and x1(t), x2(t) ∈ R are scalar

euclidean coordinates. The planar 3-joint robot has
the following forward kinematics for the end-effector∙

x1
x2

¸
,
∙
`1c1 + `2c12 + `3c123
`1s1 + `2s12 + `3s123

¸
(60)

and the manipulator Jacobian

J(q) ,
∙
−`1s1− `2s12− `3s123
`1c1 + `2c12 + `3c123

(61)

−`2s12− `3s123 −`3s123
`2c12 + `3c123 `3c123

¸
The elimination of the dynamics and rotational track-
ing requirement simplifies the control problem, there-
fore it is necessary to redefine some key terms to estab-
lish a simplified closed-loop error system. The position



tracking error signal e(t) ∈ R2 can now be defined as
follows

e , xd − x (62)

where the desired trajectory xd(t) ∈ R2 is generated by
the following bounded dynamic system∙
ẋd1
ẋd2

¸
,
∙
−0.05 sin (0.1t)
0.004 (cos (0.1t))

2 − 0.004 (sin (0.1t))2
¸

(63)
and can be seen in Figure 1. The auxiliary control input
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Figure 1: Desired trajectory for three link robot.

ud(t) as defined in (32) can be simplified as follows

ud , J+ (Kse+ ẋd) +
¡
I3 − J+J

¢
h ∈ R3 (64)

where Ks ∈ R2×2 is a positive-definite, diagonal, con-
trol gain matrix. The inner loop control input is defined
as follows

Uc , kor + u̇d + JT e (65)

where ko ∈ R+is a positive control gain. The simplified
closed-loop error system can now be written as follows

ṙ = −kor − JT e. (66)

To demonstrate the performance of all the sub-task
controllers, a different simulation was completed for
each sub-task. The initial conditions for the robot ma-
nipulator in each sub-task were intentionally selected
to make β (θ(t0)) ≈ 0 (i.e. maximize ya(t0)) to demon-
strate that (45) holds for each simulation run. In the
case of the potential energy sub-task, the initial condi-
tions for the robot manipulator was selected to maxi-
mize µ(t0).

7.1 Singularity Avoidance
To demonstrate the sub-task controller’s performance
for singularity avoidance as described by (39), (43) and
(49), the robot manipulator was initially at rest at the
following joint positions (i.e. β (θ(t0)) ≈ 0):

θ(t0) =
£
0.45[rad] 0.0[rad] 3.1[rad]

¤T

with the gains selected as follows

Ks = diag{2, 2}, k0 = 2, ks1 = 1 and α = 4

where diag{·} denotes a diagonal matrix with argu-
ments along the diagonal. Both the tracking and sin-
gularity avoidance sub-task were successfully demon-
strated, and can be seen by the following figures: the
manipulability measure β (θ) and the tracking error can
be seen in Figures 2 and 3, respectively.
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Figure 2: Manipulability Measure
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Figure 3: Tracking Error

7.2 Joint Limits
To demonstrate the sub-task controller’s performance
for joint limit avoidance as described by (39), (43), and
(50), the robot manipulator was initially at rest at the
following joint positions (i.e. β (θ(t0)) = 0):

θ(t0) =
£
0.5[rad] 1.5[rad] 3.5[rad]

¤T
with the gains selected as follows

Ks = diag{1, 4}, k0 = 8, ks1 = 1 and α = 1.

The joint limits were set to the following values

θmin1 = θmin2 = 0.5[rad] and θmin3 = 0.1[rad]

θmax1 = θmax2 = 2[rad] and θmax3 = 6[rad].



Both the tracking and joint limits sub-task were suc-
cessfully demonstrated and can be seen by the following
figures: the auxiliary signal β (θ) and the tracking error
can be seen in Figures 4 and 5, respectively.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

Time [sec]

Figure 4: β (θ) for Joint Limits Sub-Task
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Figure 5: Tracking Error

7.3 Impact Force Configurations

7.3.1 Upper Bounding the Impact Force:
To demonstrate the sub-task controller’s performance
for upper bounding the impact force as described by
(39), (43) and (52), the robot manipulator was initially
at rest at the following joint positions:

θ(t0) =
£
0.45[rad] 0.0[rad] 2.9[rad]

¤T
(67)

with the gains selected as follows

Ks = diag{4, 4}, k0 = 3, ks1 = 1 and α = 8.

The initial conditions as described in (67) places the
robot in a configuration resulting in β (θ(t0)) ≈ 0, (i.e.
a configuration with a high impact force potential). For
this simulation, a plane of contact that is always per-
pendicular to x1axis is assumed, so η(t) =

£
1 0

¤T

and is fixed. Although contact is never made, the sub-
task controller works to place the robot in a configu-
ration with less impact force potential (i.e. β (θ(t)) >
β (θ(t0))). Both the tracking and upper bounding the
impact force sub-task were successfully demonstrated
and can be seen by the following figures: the denomina-
tor of (51) which was defined as β (θ) and the tracking
error can be seen in Figures 6 and 7, respectively.
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Figure 6: β (θ) for Upper Bounding the Impact Force
Sub-Task
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Figure 7: Tracking Error

7.3.2 Withstanding Impacts: To demon-
strate the sub-task controller’s performance for with-
standing impacts as described by (39), (43) and (53),
the robot manipulator was initially at rest at the fol-
lowing joint positions:

θ(t0) =
£
0.1[rad] 1.7[rad] 4.5[rad]

¤T
(68)

with the gains selected as follows

Ks = diag{1, 1}, k0 = 4, ks1 = 1 and α = 1.

The initial conditions as described in (68) places the
robot in a configuration with a high impact force po-
tential. For this simulation, a plane of contact that is



always perpendicular to desired trajectory is assumed.
Although contact is never made, the sub-task controller
works to place the robot in a configuration with greater
impact force potential (i.e. β (θ(t)) > β (θ(t0))). Both
the tracking and withstanding impacts sub-task were
successfully demonstrated and can be seen by the fol-
lowing figures: the withstanding impacts measure β (θ)
and the tracking error can be seen in Figures 8 and 9,
respectively.

0 10 20 30 40 50 60 70 80
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Time [sec]

Figure 8: β (θ) for Withstanding Impacts Sub-Task
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Figure 9: Tracking Error

7.4 Upper Bounding the Potential Energy
To demonstrate the sub-task controller’s performance
for upper bounding the potential energy as described
by (43) and (56), the robot manipulator was initially
at rest at the following joint positions:

θ(t0) =
£
1.57[rad] 0.1[rad] 0.48[rad]

¤T
with the gains selected as follows

Ks = diag{1, 1}, k0 = 2 and ks1 = 1.

Both the tracking and upper bounding the potential en-
ergy sub-task were successfully demonstrated and can

be seen by the following figures: the potential energy
measure µ (θ) and the tracking error can be seen in
Figures 10 and 11, respectively.
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Figure 10: µ (θ) for Upper Bounding the Potential Energy
Sub-Task
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Figure 11: Tracking Error

8 Conclusions

This work utilized an adaptive full-state feedback
quaternion based controller developed in [5] and fo-
cused on the design of a general sub-task controller.
This general sub-task controller was developed as to
not affect the tracking control objective, and allows for
the design of specific sub-task objectives. Four specific
sub-tasks were designed as follows: singularity avoid-
ance, joint-limit avoidance, bounding the impact forces,
and bounding the potential energy. Simulation results
are presented that demonstrates both the tracking and
sub-task objectives were met simultaneously.
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Appendix

A Proof of Theorem 2

Let V3(t) ∈ R denotes the following non-negative function

V3 ,
1

2
y2a. (69)

After taking the time derivative of (69), the following simplified
expression can be obtained

V̇3 = −ks1
°°Js ¡In − J+J¢°°2 y2a (70)

+ya

∙
JsJ

+Λ−1
∙
ṗd +K1ep
−RTd ωd +K2ev

¸
− Jsr

¸
where (44) was utilized. From (39), (41), (56), and the fact that
p(t) ∈ L∞ from Theorem 1, Remark 2 can be used to show that
θ(t) ∈ L∞; hence, it is clear that Js(θ) ∈ L∞ for all sub-tasks.
From Remark 1, it is clear that J (θ) and J+ (θ) ∈ L∞ and has
full rank. Utilizing these properties we have°°Js ¡In − J+J¢°°2 > δ̄ (71)

where δ̄ ∈ R is a positive constant. From the above bounded-
ness statements, and the boundedness assumptions placed on the
desired trajectory, the following upper bound can be made°°°°JsJ+Λ−1 ∙ ṗd +K1ep

−RTd ωd +K2ev

¸
− Jsr

°°°° ≤ δ1 (72)

where δ1 ∈ R is a positive constant. After applying the bounds
defined in (71) and (72), the expression in (70) can be written as
follows

V̇3 ≤ −ks1δ̄y2a + δ1ya. (73)

The expression in (73) can be written as follows

V̇3 ≤ −
µ
ks1δ̄ −

1

δ2

¶
y2a + δ21δ2 (74)

where the following inequality was utilized

|δ1ya| ≤
1

δ2
y2a + δ21δ2 (75)

where δ2 ∈ R is a positive constant. Provided ks1, δ̄, and δ2 are
selected according the following conditionµ

ks1δ̄ −
1

δ2

¶
> 0 then ks1 >

1

δ̄δ2
, (76)

the expression in (74) can be written as follows

V̇3 ≤ −γy2a + ε (77)



where γ, ε ∈ R+ are bounding constants. After substituting (69)
into (77), the following expression can be written

V̇3 ≤ −2γV3 + ε. (78)

After integrating each side of (78), the following solution can be
written

V3(t) ≤ V3(t0) exp(−2γt) +
ε

2γ
(1− exp(−2γt)) . (79)

From (79), it is clear that the following upper bound for ya(t)
can be written

|ya(t)| ≤
r
|y2a(t0)| exp(−2γt) +

ε

γ
(80)

thus proving that ya(t)∈ L∞. From (43), it is clear that h(θ) ∈
L∞. Utilizing the previous bounding statements with (44) it is
clear that ẏa(t) ∈ L∞. After taking the time derivative of (43),
it is clear that

∂h(θ)
∂θ ∈ L∞.


